(solution) PART I Barges arrive at the La Crosse lock on the Mississippi

(solution) PART I Barges arrive at the La Crosse lock on the Mississippi

  1. PART I
  2. Barges arrive at the La Crosse lock on the Mississippi River at an average rate of one every 2 hours. If the interarrival time has an exponential distribution, 
    1.              
    2. (a)  What is the value of ????the mean arrival rate?             
  3. PART II 
  4. Consider the La Crosse lock mentioned above. Assume that the basic model is reasonable approximation of its operation. The new estimate of the mean interarrival time for the coming season is 60 minutes for barges, and on the average it takes 30 minutes to move a barge through the lock. How all work and find: 
    1.              
    2. (a)  The expected number in the system.              
    3. (b)  The expected number in the queue.              
    4. (c)  The expected waiting time.              
    5. (d)  The expected time in the queue.              
    6. (e)  The probability that the system is empty.              
    7. (f)  The longest average service time for which the expected waiting time is less than 45 minutes.  
  5. PART III
  6. Use the answers to the problem in PART II to show that Little?s Law holds.