Question Details
(solution) Exercise 5 (page 6) #1, 3, 7, 13, 15 Make sure you include the
Exercise 5 (page 6) #1, 3, 7, 13, 15
Make sure you include the premises in your proof
Valid Forms for Sentential Looic
Valid Argument
Forms of Inference 1 . Modus Ponens(Mpl:
p) 5 . Conlunction{Conj}: q p p l.'. q q l.'.p.q Modus Tollens(MT): b. HypotheticalSyllogism (flSl: p) q p) q - Q /:' - P q ) r l . ' .p ) r 3 . DisiunctiveSyllogism (DSl:
pv q P l:.Pvq - p l..q ConstructiveDilemma ICD)
: pv q
-q 7 . Addition {Add): pv q l.'.p Simplification(Simp): g ) s l . ' .r v s P ' a / . ' .P
P q /.'.q Valid Equivalence
Forms (Rule of
Replacementl Double Negation (DN):
p:: -- p ( pl q ) : :( - q ) - p l DeMorgant Theorem (DeMl:
-P q).:(-pv-q)
-lpvqJ::Gp.-e)
't1. Commutation (Comm):
(Pvql.:@vp) t 5 . lmplication(lmpl):
( p l q ) : :( - p v q )
1 6 . Exportation (Expl:
I(p dtrl::lp)(qtr)l
1 7 . Tautology (Taut): @ o ) : :l q ' P 1 p.:p.pl 12. Assocation(Assocl:
[email protected])l::[(pvqJvr]
,r'1o'r))::[email protected] q).r) 1 3 . Distribution (Dist):
Ip lq v r)l:: llp. ql v p. rl)
l p v ( q r ) l: : { ( p v q ) . ( p v r ) l Conditional and
lndirect Proof 1 4 . Contraposition (Gontral: p:: pv p)
(Equivl:
1 8 . Eguivalence
(p-q)::t(plq).(q)pll
( p = q ): : l ( p q l " (- p. - q)l ConditionalProof A Pt . . q rr
I I
l^
p) q cP AP 1...p Bules for PredicatELogic
Rule Ul: {uX Rule El: . t t . " 1 . . .w (3u)( RuleUG: t:. .) w. ..1 I l.'. lvil . . w Provided:
1. (. . . w. . .) results
from replacing
eachoccurr e n c eo f u f r e e i n { . . . u . . . ) w i t h a w t h a t i s
fl
e i t h e r a c o n s t a n t o r a v a r i a br e ei n ( . . . w . . .
(making otherchanges).
no Provided:
1. w is not a constant.
2. w does not occur free previously the proof.
in
3. l. . . w. . .) results
irom replacing
eachoccurrenceof ufree in (. . . u. . .) with a wthat rs free
i n ( . . . w . . . ) ( m a k i n g o o t h e rc h a n g e s ) .
n Provided:
1. u is not a constant.
in
2. u does not occurfree previously a line
obtarned El.
by
in
u does not occurfree previously an assumed
premisethat has not yet been discharged.
(. . . w .. .) results
from replacrng
eachoccurr e n c eo f u f r e e i n ( . . . u . . . ) w i t ha w t h a t r s f r e e
in (. . . w. . .) {making otherchanges}
no
and
free occurrences h/
of
there are no additional
n
a l r e a d v c o n t a i n ie d( . . . w . . . 1 . Rule EG: 1 . . u . . ) / . ' .l 3 v t | l RuleON: { u X . . . u . . . ) : :- ( 3 u-) ( . . . u . . .)
(lu)(. . . u . . . ) : : - ( u ) - ( . . . u . . .)
( d - ( . . . u . . . ) : :- ( l u ) ( . . . u . . .)
E u ) - ( . . . u . . . ) : : - l u l l . . . u . . .) Rule lD: (...u...1
u=w l.',( RulefR: l.'. xllx= x) w...) Provided:
1- (. . . w. . .) results
from replacing least one
at
occurrence u, where u is a constantor a variof
ablefree in (. . . u. . .) with a wthat is free in
(. . . w. . .) (making otherchanges) there
no
and
free occurrences w already
ol
are no additional
in
contained (. . . w. . .) {...u...)
w=u l;. 1 w. ..1 e
f y encrs -l^v-i/^'1,(ig5 Cwsl>".f { ' o n t / 4 6 i/u*,V t, (A ) B)= (e u -A) rrulpurys I o, t
.(* (a v : B))>(s 'a)
c)(*B )'-4=
$r,<)
,i) ..- = ((u -, A),(,(o
A
) B)) _ 4)) (a r(.-) " A ='*A
fj
'J) (A"-A)> B A) A ) (e ,n)
Z
Fxenr,j(
R r ^ e , , c h 5 e n / t r t f D t .f l - , l r ( t
fAv,tu5h o lt ,t(
t
f l ' l + 9 e a { * n t f{ ; , * t
cvt fU bt'shl q^ul n crc *k (hy ;f ls
(r,i s'[-fufi",'' tnrf>ntp
q
fr"rn.
ov- it ,ot
"( iA"i sah/et4ce # l.A
2. A)B
3. (AvB))C
4. [email protected])q
5.(-AvB))C
6.-(AvB))C
7. -Av(Bf
C)
8 . ( Av B ) ) - C
9.-IAv(BlC)l
10. -(-AvB))C
11. -[(AvB))CJ
12.-(AvB))-C
13. -[-(A.rB)rC]
14. -t-?evB)lCl
15.-t(-AvB))Q f
t i a
E A,r'- QUtL
tuAih a.p
b. -p
c.pvq
d.p)q
e.-pvq
f.-p)q
E.-p)-q
h.-(pvq)
i. -(p)q)
J.-(-p)q)
k. (pvq))r
l. pv(q)r)
m. (- pv q)) r
n. -(pvq))r
o. (PVo)>-,
p.-[pv(q)r)]
q.-t(pvq))rl !^
o(
d'tr? ftr d iluA,tn1 ^(eryPns,l 0 f t t|w { , l S
r^
'x or
t vPi l- { v'tn* -{at ou los.7 ( fif
/
1n
o ,,/
TA l)
z-) (<'7"erre.) [email protected]
C
) ".'A ) B ,l) '.--fA) B) r) (a) 4"k= D).6vFrG) a (*r t {':
*--. Exercise
L i'
a; Use MP, MT, DS, and HS to prove that the following argumentsare valid. la :. (l) 3 l. -R
2 . s I R / . . .- S (2) A.S
(A.S))R/."R (3) - (H.K)
Rv(I/.K)/.'.R (4) (PvQ)l(R'w)
L)(PvQ)/.'. tr(R.w) (5) Rfs
rlR -s/.'.-T (6) -M
NfG
NvM/.'.G (7) - D) E
D)F
-F/:.E (8) Gv H
-Hvl -r/.'.G (e) -G)(AvB)
-B A) D
- G/.'.D (10) . (A) B)) C
r
2. -DvA 3. -D f (Af B)
4. - A/.'. C
(1r)1. Ar(Bf
C)
2. -C
3. -D)A
4. Cv-D/.'.-B
( 1 2 )1 . - ( D . F )
2. (LvM)vR
3. -T)-(LvM)
4.(D. F)v-T/.'.R
( 1 3 )l .
2.
3.
4. (AvB)r(BvO
(B)C)vA
(BlC)l(AvB)
-Al.'.BvC ( 1 4 )l . ( P . O l l R v ( r . D l
2. (Tv R)r(P.O) 3. - (r.s) 4 , T v R / . ' .R Exercise
4y'
Use the eight implicationalargument
forms to provethat the following arguments valid.
are
(l) {B.M))R
L)(B.M)/."L)R (2) RvS
(A)L)'[(Rvs)rr]
/.'.TvL (3) (s) (8) (FlG)vH
-G
-Ht...-F (10) A)(A.B)
C)A A I (- B.C)
C)D
EvB
A/.,.D.8 (e) A.B
B)CI.,.C C)A
A)(B.D)
C 1,,,
B L
Zv-R
(ZvR))-T
/ . ' .- R v B R.S
T/.'.(TvL).(R.S) (4) (7) /.'.rc)(A B)1.(CtA)
(6) A) B
C.A/.'.BvD (11) l. Rv - W ( 1 7 )t . A
2. (BvC))D
3. (AvE))(B.C)/...D 2. -w)L 3. RIT/...TvL
( 1 2 )1 . ( R . A ) v E
2.(R.A))D
3. -D/...E.-D
( 1 3 )l . ( A . D ) I - C
2. (Rvs)r(A D)
3. -C)-(A.D) /.'.(RvS)r-6.D)
( 1 4 )r . A
2. (4v-D)r(R S) /.'.(R.S) v B A vB
C)A
(8.- c) I (D.- C)
-A/...D ( 1 9 )l . ( - A . - B ) r ( c l B )
2. B)A
3. -A/...-C
( 2 0 )1 . [ - A . - ( D . D ] ) @ ) _ D ) 2.-(D.E).-n 3. E) F
4. -Av(D.E)
s.-(D.E)t(BvE)
/ . ' .- D v F (rs)l.
2. (CvA))L
3. Av D
4. (DvU))C/...L
(16) l. R
2. -Rr(-i4.-N)
-3.
-(-Pv-M)
-A A
-- ZvR/.'.(-U ( 1 8 )l .
2.
3.
4. -N).2 Exercise
; 5 Using the eighteenvalid argumentforms, prove that the following argumentsare vaiid'
(Theseproofs are very basic.None requiresmore than six additionallines to complete). ( 1 ) r . ( A. B ) r C
2. A/."8)C
(2) l. -RvS
2. A) (R'S)i.'. -A
(3) r. -MvN
2. -Rl-Nl:.M)R (4) r. A)B
2. -(8.-qt.'.A)c
(5) r. -Ar(B.C)
2. -Cl:.A (6) r. F)G
2. - (H.G)
3. Hl."-F (7) l.-(F/v-K)
2. L)H/...L)M (t2) r. A.(B)C)
2 . - ( c . A ) / . . .- B (8) l. M=N/...-NvM ( 1 3 )1 . ( A . B ) v ( C . D )
2, -A/...C (9) t. A)-A
2.eev-B))Ct.'.-A.C
( 1 0 )l . R l . t
2. R)T/...Rt(.t.r)
( 1 1 )l . H ) K
2. C=D
3. -c)-K/...H)D ( 1 4 )l . D v - A
2.-(A.-B)t-c
3. -D/."-c
(r5)l. (A.B)) C
2 . A . - C / . . .- B Exercise
C 6 Prove that the following argumentsare valid. These proofs especiallyemphasizeDist,
Comm, and Assoc. This exerciseis fairly challenging.Rememberthat Dist, like all our
equivalence
rules, works in both directions. (l) (1) l . ( A B ) v ( C . D ) 1. Av(B.C)
2. -C/:.A l:.(C.D)vA (2) l. (Av B)v C
2.-(BvC)/:.A (8) 1 . ( A v B ) . C (3)'1 (AvB).c
2.-(B.C)t...C.A (9) 1. t(A B) ' D) v (C . A) t.'. A 2. -Av-C/.'.C.8 ( 1 0 )l . ( - R (4) l.(A'B)v(C.D)
2. -C/...A A)v-(QvR)/.'. -R (11) l. [(A v B) . (D . F)) v
[(AvB).C1.'.CvF (s) l.(A'B)v(C.D)
/.'.(A.B)vD ( 1 2 ) r . t ( A. B ) v ( D . 4 1 v ( 8 . C )
2.-(D.nt.'.8 ( 6 ) l . ( A . B ) v ( C . D ) l . ' .D v A Exercise
fI 7 Prove valid using the eighteen valid argument forms. (These proofs are moderately difFrcult. They will require betweensix and fifteen additionallines to complete.) (7) r. -H ( 1 ) l . ( A. B ) I R
2.A
3. C)-Rt...-(C B) (2) l. -A
2. (AvB):C -Bt.'.-(c J. (3) l. D) @.m)(M.n) /.'. (A .1{) r N
(4) 1. S v ( - R . ] n )
2. R l - s / . . . - R (5) l. H)K
2. (K.L))Mt...L)(H)M)
(6) l. A)B
2. C ) D
(BvD))E
J.
4. - E l : . - ( A v C ) (12) P]R
-P)(-RlS)/.'.RvS (l 3 ) -(DvC) -c)(Al-B)
A=Bl.'.-A 2. HvK
3. L)H
4 . - ( K ' - L ) v ( - L . M ) t . ' .M
(8) 1 . ( A ' B ) = C
2.-(Cv-A)l:.-B (e) r . (HvK))(A)B)
2, (HvM))(C)D
3. (HvN)l(AvC)
4. L.Hl.'.BvD ( 1 0 )1 . W = Y
2. -Wv-Y
3. X)(Y.Z)/.'.-X
(ll) 1. AvB
2.C
3.(A.C))D
4. -(-F.B)1.'.DvF
(14) l. -(CvA)
2. B r ( - A ) c ) 1 . " - B -(A.B):-c
@veI)C/"'E)A Exercise
J g For each-of the following expressionsindicate (l)
which variablesare free and which
bound; (2) which letters serve as individual constants
and which as property consranrs;
(3) which free variablesare within the
scopeor ro*" quuntifieror other and which
individual constants not within the scopeof
are
any quantiirer.
(x)(Fx ) Ga)
2. (3x) (Fa. Gx
I. 3. (_r)[Fx) (Gy v Hx))
(.r)Fx f (1y)(Gy v Dx) 4. 5. Fa v (x)[(Ga v Dx) ) (- Ky . Hb)] 6. (x)(Fa)Dx))(])tryt ?GxvFx)l Exercise
, 9 Construct
expansions a two-individual
in
universe
ofdiscourse the followinssentences:
for
. Gx)
1. (.t)(Fr
8. -(3x)(FrvGx)
2. (3x)(Fx v Gr)
3. (-r)[F,r] (Gx v Hx)) 4. (fu)trr . (Gxv Hx)l
5. (x) - (Fx ) Gx)
6. (lx) - (Fx v Gx)
1. - (xXFx f Gx) Exercise
U 9.
10.
I l.
12.
13.
t4. (rXFr I (Gx ) Hx)l
(xXFr f - (Gx Hx)l
(lxX(F.r . Gx) v (Hx Kx)l
(xX(Fx.Gx) I (Hx. Kx)l
(lx) - [(Fx ) Gx) v (Fx) Hx)]
- (x) - l(Fx Gx). - (Hx. Kx)J lO Provethat the following arguments invalid.
are ( l ) 1 . ()x)(Ax. Bx)
2 . (3x)(B.r'Cx)
/ .'. (3x)(Ax. Cx)
(2) l. (x)(Ax ) Bx)
) (lx) - Ax l.'. (3x) - Bx
( 3 ) l . (lx)(A-r. - Bx)
2 . (3;r)(4.r.- Cx)
3 . (3rX- Bx. Dx)
/.'. (3x)[Ax (- Bx . Dx)l
(4) L (xXFx ) Gr)
2 . (x)(- Fx ) Ex)
I .'. (x)(- Gx ) - Ex)
( 5 ) l . (].r)(Px.- Qx)
2. (x)(RxI Px)
/.'. (l,rXRx - Q*) ( 6 ) I . (x)IQx. Qx) ) Rx)
') (lx)(Qx' - Rx)
l:. (x)(- Px . - Qx)
( 7 ) l . (x)(Px ) Qx)
) (x)(Qx ) Rx)
/.'. (x)(P.r.R.r) (8) l. (x)[Mx)(Nx)Px)
2. (x)(Qx ) Px)
/:. (x)[Qx ) (Mx . Nx)) (e) 1. (lxXAx.B;)
2. (x)(- Bx v - Cx)
/.'. (x)(- Ax v - Cx) (10) l. (3x)(Axv-B.r)
2. (x)l(Ax.-Bx))Cxl
/.'. (1x)Cx Exercise
* il Completethe following proofs using the rules for adding and removing quantifierswhere (l) l. (x)F; v (r) - Gx
2. - (x)Fx
3 (x)(Dx ) Gx) p
P
p
/.'. (1xX- Dx v Gx) (2) l. ( . x ) [ A r v ( B x . - C . r ) ]
2 . (x)Cx p
p | :. (3x)(Dx ) At) (3) L (x)[- Ax v (Bx . Cx)]
2. ( x X ( / x ) C x ) ) D x l
(x)(Dx I - Cx)
J. p
p
p l:. (fx) - Ax (4) p
p
p /.'. Bc L Ab) Bc z. (x)(Ax) Bx)
J, (xX(tu)Bx))Axl (5) l. A b v B c
2 . (x) - Bx p
p /.'. (ix)Ax ( 6 ) 1 . $)(Ry r - Gy)
2 . ()(87 v Gz)
3 . (y)Ry p
p
p t:. (v)Bv ( 1 ) 1 . (dlAz ) (- Bz ) Cz)l
2. - B a p
p l:. Aa) Ca ( 8 ) l . (xX(&r .Ax) ) Tx)
2 . Ab
3 . (x)Rx p
p
pl:.Tb.Rb Exercise
1? iZ
Which lines in the following are not valid? Explain why in eachcase. (l) l.
2.
3.
4.
5. .Kx)) Mxl
(xX(FIx
(]x)(Hx. Kx)
Hx.Kx
Mx
(fx)Mx (2) r. (x)(Mx) Gx)) Fa
2. (x)(- Gx ) - Mx)
3.-Gy)-My
a. (xX- Gx ) - Mx) ) Fa
5. (- Gx) - Mx)) Fa
6. Fa
7. (x)Fx
(3) l.
2.
3.
4. (lx)(Fx.- Mx)
(x)[(Gxv Hx) ) Mx]
(Gy v Hy) ) My
Fy.- My 5. - M1'
6. -(GyvHy)
7. (1x) - (Gx v Hx)
(4) 1. (1x)(Px ' Qx)
2. Pv'Qv
3. Qy
a.Qyv-R.y
5. (x)(Qxv-RJr) ( 5 ) l . ( 3 x ) [ ( P x. Q x ) v R x ]
2.
3.
4.
5.
6.
7.
8. (x) - Rx
(3x)(Px v Rx)
Pxv Rx
-Px
(x) - Px
- Pv
(z) - Pz ( 6 ) l. - (x)Fx
2.
3.
4.
5.
6.
7.
8.
9. (1x)Lx
(x) - Fx
-Fx
I^a
Lx
Lx.- Fx
(lxXl.x (x)Lx Fx) p
p
2El
I , 3M P
4EG
p
p
2Ul
I Contra
4UI
3,5MP
6UG
p
p
2Ul
IEI
4 Simp
3,5MT
6EG
p
IEI
2 Simp
3 Add
4UG
p
p
I Simp
3EI
2,4DS
5UG
6UI
7UG
p
p
p
IUI
2El
2El
a,6 C.qnj
7EG
5UG Exercise
I f3 Prove valid.
(l) l. (x)(Rx ) Bx)
2. (3x) - Bx p
p /.'. (Lr) - Rr (2) 1. (x)(Fx ) Gx)
2 (y)(Gy ) Hy) (3) 1. Ka
2. (x)[Kx ) (y)Hy] p
P /:. (z)(- Hz) - Fz)
p
p /.'. (x)Hx (4) l. (.r)(Fx I G.r)
2. (x)(Ax ) Fx)
3. (fx) - G; p
p
p /.'. (3x) - Ax (5) l. (x)(M-r I S.r)
2. (x)(- Bx v Mx) (6) l. (xXRr I Ox) p
)
P /.'. (xX- ,Sx - Br)
p
p
p /.'. (12)Pz 2' (3Y)- ov
3. (z)(- Rz) Pz)
(7) t. ()x)(Ax. Bx)
2. (y)(A1, Cy)
) p
p /.'. (3x)(Bx. Cx) ( 8 ) l . (1,Y),tt
2. ( x ) ( - G x f - R r )
3 . (x)Mx p
p
p /:. (1x)Gx . (1x)Mx (e) l. p
p /:. (1y) - Gy (x)[(FxvRr))-Gr]
-Rx) 2. ( f u ) - ( - F x ( 1 0 ) l . (x)(Kx) - Lx)
2. (3x)(Mx. /x)
(l l) l . (x)(Fx ) Gx)
2. (y)(Ey ) Fy)
(z)-(Dz.-Ez)
J. (12) l. (x)(l,x ) - Kx)
2. (12)(Rz.
Kz)
(y)t(- Ly Ry)) Byl
J. P
p l.'. (lx)(Mx' - Kx)
p
p
p l:. (x)(Dx) Gx)
p
p
p /.'. (1x)Bx Exercise
3 t,z Provevalid (note that theseproblemsare not necessarily order of diffrculty).
in
(l) (2)
(3) l. (lr)fr v (fx)Gx
2. (x)-Fx
l.
l. (4) l. (s) l.
2. (6) L
2. p
p
l.'. (1x)Gx
(x)(Hx) - Kx)
p
/:.-(ly)(Hy.Ky)
- (x)A-r
p
/.'. (3x)(tu ) Bx)
- (lx)F.r
p
/:. Fa ) Ga
(1x)Fx ) (x) - Gx
p
(3x)Ex I - (x) - Fx
p
l.'. (1x)Ex ) - (3-r)Gx
(3rXA.r. Bx) ) (y)Cy
p
-Ca
p
/.'. (x)(Ax) - Bx) (12) 1. (x)(Gx ) Hx)
p
) (3.r)(1.r.-Hx)
p
3 . (x)(- Fx v Gx)
p
/.'. (3x)(lx. -Fx)
( 1 3 ) L (x)l(Ax. Bx)) Cxl
p
2. - c b
p
t . . .- ( A b . B b )
( r 4 ) 1 . - (x)(Fx ) Gx)
p
2. - (lxX- Gx. Hx)
p
/.'. (1x) - Hx
( l 5 ) l . (x)(Hx ) Kx)
p
2. (3x)Hx v (Lr)Kx
n
r
/.'. (lx)Kx
( 1 6 ) 1 . (3.r)Fx (lxXGx.Hx)
I
p
2. (lx)(Hx v Kx) ) (x)Lx
p
/... (x)(Fx) t-r) (7) l . (x)[(Fx v Hx) ) (Gx. Ax)] p
p
2. - (x)(Ax. Gx) (8) 1 . - (x)(Hx v Kx) l:. (fx) - Hx
p 2 . 0)t(- Kyv Ly)) Myl p
/... (12)Mz (e) 1. (x)[(F.rv Gx) ) Hx) p
(.rX(Hxv Kx) ) Lxl
p
2.
/:. (x)(Fx ) Lx)'
(10) 1. (lx)tu)(x).9x
p
) (.rXfx I R.r)
p
/.'. (1x)TxI (fr)Sr
( rl ) l . (x)[(A.rv Bx) ) Cx]
p
p
2. - (lyXCy v Dy)
l.'. - (fx)Ax .Ax) ) Dx)
(17) l. (x)[(Bx
p
2. (3x)(Qx.Ax)
p
3. (xX- Bx ) - Qx)
p
/.'. (lx)(Dx . Qx)
(18) l. (rXPx) (Axv Bx))
p
2. (x)[(Bxv Cx)) Qx]
p
/:.(x)[(Px.-Ax))ex]
(19) l. (rXPx f (Qr v Rr)l
p
.
2. (.rX(Sx Px) ) - Qxl
p
/.'. (xXSx) Px) ) (xXSxI rtr)
(20) l. (x)l(A-r B.r)) (Cx.Dx)J p
v
/.'. (fx)(Ax v Cx) ) (]x)Cx Exercise
n i >- Indicatewhich (if any) of the inferences the following proofs are invalid, and statewhy
in
they are invalid. (1) l.
2.
3.
4.
5. (lx)(y)Fry
Q)Fxy
Fxx
(3y)Fyy
(.rXiy)Fyr (2) L (fx)Fx
2. (]x)Gx
3. Fv
4.Gv
5. Fy.Gy
6. (lyXFy.Gr)
'7.
Gz)(1y)(Fy. Gz)
(3) 1.
2.
3.
4.
5. (.r)(3yXFx Gy)
I
(?y)(Fx ) Gy)
Fx :- Gy
(x)(Fx ) Gy)
(lyX-rXF.r f Gy) (4) l. (x)(lyXFx ) Gy)
2 . Fx
3 . (3y)(ry r Gy)
Fy)Gy
5 . Gy
6 . (lw)(Fw I Gy)
1
Fw)Gy
8. (fw)(Fw ) Gw)
9 . (1w)[(Fw ) Gw p
IEI
2Ul
3EG
4UG
P
p
1EI
2El
3,4 Conj
5EG
6EG
p
ltJI
2El
3UG
4EG
p
AP /.'. (lwX(rw ) Gw)'Gyl
lUI
3EI
2,4WP
4EG
6EI
7EG
5,8 lu. 1 1 . (x)lFx I (3w)[(Fw Gw).Gyll
) (s) 1 . (x)br)[(z)Fzx' ' Hd))
(Gy
2. O ) I Q ) F z a ) ( G y . H A l
3. (z)Fza)(Ga.HA
4. Fba ) (Ga. Hd1
5 . (fy)lFby:_(Gy.Hd)l
6. Fbv
7. G y . H d
8 . Hd
9 . (lx)Hx
1 0 . Gy
I l . (x
12. Fby ) (x)Gx
13. (v)FbyI (;r)G.r
((r,1 l. (xXtv)Fry Grl
I
2, (t'Far ) Ca
3. l;ut') Go
'' Gu
l''4
lin'
5
|
tr.,t..glirr
I 7 ^ ' G u ) (x) - Fax
8 . ( l _ y )^ G y f ( x ) - F y x 10UG
p
lUI
2Ul
3UI
4EG
AP /.'. (x)G.r
5,6MP
7 Simp
8EG
7 Simp
IO UG
6-ll cP
12UG
p
ltJI zVr AP/.'. (x)- Fax
3,4MT
5UG
MCP
7EG Exerciseill Z Ans.*er;, 2. a,d 10. a, d, f, n
12. a, d, l, g, n
14. a, b, i, i 4. a,c,l
6. a,d,f,n
8. a,d,k,o 4^s'wrts E x e r c i s e3
*
(21 J. tI (4) ? I (6) 1 , 2M P
1 tD ttll 4.N 4.-H E 2 , 3D S -n 6. A) 1 , 4D S
2,6 DS 5. P.O 2,4MP 6. Bv (I. S)
7. R ( 14 ) 1 , 4D S
(10) c.-, 6. - (Lv Ml
7. R 1 , 3D S
2 , 4M P (8) (12) 1 , 2H S 3,6 DS 3,5 MP 1 , 5M P 2,4DS
B 3.5 MP -7/. 1 , 6M P Exercise ,lnlwers
4{
(21 3. (Rv$f f 2 Simp 4.7
5. fvL
(4) 4 Add (10) 1 Simp t^ (8) 3. B
+.v (6) 2,3MP 3. A
4.8
5. 8v D
5. -B.C 2 Simp 6.C
7. D
8. -8
9.E
1 0 .D . E
4. lvfr 5 .- r l12t (14) 1 . 3M P 6. -8
7. - Rv B
4. - (R. Al 1 , 3M P
4 Add (18) 1 , 4M P
5 Simp
2,6 MP
5 Simp
3,8 DS
7.9 Coni
1 Add
3,4 MP
2,5 DS
6 Add
2,3 MT 5.F 1 . 4D S 6. E.- D 3,5 Coni (20) 3. Av-D
4. F.S
5, (B'SlvB
5. -R
6.2
7. -M.-N
8. t- M.- Nt.Z
5.8
6. -C
7. B.-C
8. D.-C
9,D
6 . - ( D .E )
7. - A
8. -A.-(D.E)
9. B) - D
1 0 .8 v E
1 1 .- D v F 1 Add
2,3MP
4 Add
1 . 3M T
4,5 DS
2,5 MP
6,7 Conj
1 , 4D S
2,4MT
5,6 Conj
3.7 MP
8 Simp
2 Simp
4,6 DS
6,7 Conj
1 , 8M P
5,6 MP
3,9,10CD Exercise{F Anc wrYS G (4) 3. Av(8vC) 'l Assoc 4.4 (21 2,3DS 3. t(A' 8)v Cl.
tA' Bl v Dl
4. lA.BlvC
5. A.B
6.4 (6) 2. IlA. B) v Cl .
l(A' 8) v Dl
3. A.Blv D 4. DvlA-Bl
5. (Dv Al.(Dv Bl
6. Dv A
(8) 3. C'Av8l
4. (C.Al v(C.8)
5. - Cv - A
6. - (C.A)
7, C.B Exercise
n
l2l 7 1 Dist
2 Simp
3 Comm
4 Dist
5 Simp
l Comm
3 Dist
2 Comm
5 DeM
4,6DS 4. [(AvB]f C1.
lCl(AvB)l
5. Ct lAv 81
6. -4.-B 2 Equiv
4 Simp
1,3 Gonj
6 DeM
5.7 MT 9. -Cv-D 8 Add 1 0 .- ( c . o ) 9 DeM 3. (Sv-F)'(SvI)
4. Sv-8
5. - - Sv - B 1 Dist
3 Simp
5lmpl 7. R)-R
8. - 8v - R
9. -R 2.6 HS 5. - (8v D)
6. -8.-D 3,4 MT 7. - B
8. -A 6 Simp 9. -D 6 Simp 1 0 .- c 2,9 MT 11. - A.- C
12. - (AvCl (14) (10) 4DN 6. -Sl*F (6) t12l 8,10 Coni 7lmpl
8 Taut
5 DeM
1,7 MT 11DeM 3. - (A v C)
4. -(--AvC)
5. - (- A)
6. -8 3Dist
4Simp
5Comm 7.(-Rv-Rl
.(-RvA)
8. -Bv-F
9. -B 1 Dist
3 Simp
2,4DS
5 Simp 2. 1-R.Atv
- (Fv O)
3 . ( - B . A )v
(-B'-O)
4. t(-F'A)v-Fl
.l(-F.Alv-Ql
5. (-F.A)v-R
6. -Rv(-F.A) 6Dist
TSimp
STaut 3. l(D'FlvlA'8)l
v (8. C)
4 . ( D . F l v [ { A' 8 )
v {8. C)l
5. A' A v {8. C)
6. (8'A) v (8. C)
7. B'lAvCl
8. B l Gomm
2DeM 1Comm
3 Assoc
2 , 4D S
5 Comm
6Dist
7 Simp tn*,*t'S 7. - (Av Bl
8. -C (4) (10) 1 Comm
3DN
C) 4 tmpl
2.5MT t12l 3. -C.--A
4. -C
5 . t ( A .R t) C l . C) A . A l
6. G.A)C
7. - lA. St
8. -Av-B
9. --A
1 0 .- B
4. (W. Yl v
l- W. - Yl
5. - (W. Yl
6. -W.-Y
7. -Y
8. -Yv-Z
9. - ly. Zl
1 0 .- x
3. -Bl-P
4. -nl(-F)Sl
5. (-F.-R)lS
6. -F)S
7. --FvS
8.8vS 2DeM
3Simp
1 Equiv
SSimp
4,6MT
TDeM
3Simp
8,9DS
1 Equiv
2 DeM
4,5DS
6Simp
TAdd
8 DeM
3,9MT
lGontra
2,3HS
4Exp
STaut
6lmpl
7DN i Exercise
f
t2l J. -(R @ r(4>-(r'>
S) 1 DeM 4. 3. - B v - - C
4. - B v C 2 DeM
3DN B) C
A)C
4. - H v - G
5. - - H
6. - G (10) 2,3 MT 4lmpl b. -F 1 , 5H S
3DN
4,5 DS
1 Equiv
2 Simp
3lmpl llmpl
2lmpl
(-Fvf)
f) 3,4Conj
SDist (14) r)
7. Rl(S
3. -Cv-A 6lmpl
2DeM 4. A
5, --A l12l 2 DeM 1 , 6M T 2. ( M ] M , ( N ] M )
3. N ) M
4. - Nv M 3. -BvS
4. -RvT
5. (-BvS)
6. -Rv(S 1 Simp
4DN 6. -C
1. B)C
B. -8
4. - A
5. --Av--'B 3,5DS -Bl SDeM 6.-lA
7. -C lSimp
6,7MT
1 , 3D S
4Add
2,6MP 8 An< u"-r
2. D. ( 1 )x i s b o u n d .
c
;
l
{ 2 ) a i s a n i n d i v i d u ac o n s t a n tF a n d G a r e p r o p e r t y o n s t a n t s '
(3) No free variables;a is within the scope of the (x) quantifier'
are
h
( 1 ) y a n d t h e { i r s t x v a r i a b l e ( n o t c o u n t i n g t h e x t h a t i s p a r tto fe q u a n t i f i e r )
i
b o u n d ;t h e s e c o n dx v a r i a b l e s f r e e '
(2) No individualconstants;F, G, and D are propertyconstants'
( 3 1F r e ex v a r i a b l ei s w i t h i n t h e s c o p eo f t h e ( / q u a n t i f i e r '
free
( 1 )T h e f i r s t x v a r i a b l e a n d t h e y v a r i a b l ea r e b o u n d .T h e l a s tt w o x v a r i a b l e sa r e
constant'
a
Ql F, G, and D are property constants; is an individual
T
( 3 )T h e t w o f r e e x v a r i a b l e s r e w i t h i nt h e s c o p eo f t h e ( y ) q u a n t i f i e r .h e i n d i v i d u a l
a
a, is within the scopeof the (x) quantifier'
constant, Exercise
U
2.
4.
6.
8. g tlqsu/rrs lFa v Ga)v (Fb v Gb)
lFa (Ga v Hall v tFb {Gb v Hb)l
-lFavGa) v-(FbvGbl
-[(Fav6a) v(FbvGb)l 10. [Fa] - (Ga' Hall. lFbl - (Gb. Hb)l
12. l(Fa. Ga) I lHa Kall
t ( F b . G b )I ( H b . K b ) l
14. - {- llFa Gal - (Ha Kall
- t(Fb Gbt.- (Hb Kb)l) Exercise:Il /f h"tsuers
4. Rx)-Gx lUl 2Ul 5. Bxv Gx 2Ul 5. Dx
6. Cxv-Bx
7.-8xvCx APl.'. Ax
4 Add
6 Comm 6. Bx
7. - Gx 3Ul 8. -8x 21 3. Ax v (Bx. - Cxl
4. Cx 7DN 1 Ul (6) 4,6 MP
5,7 DS 9. lylBy
4. (Bb. Abl ) Tb 8UG 3,9 DS v--Cx 8. 8x 5. Fb 3Ul s-10cP 6. Rb.Ab 2,5 Conj 1 1E G
2Ut
3Ul
4.5MP
1 , 6M P 7. Tb 4,6 MP 8. Tb. Rb 5.7 Conj 8 DeM (4) 11, Dx) Ax
12. lSxl(Dx) Axl
4. Ab-r-Bb
5. (Ab I Bbt) Ab
6. Ab
7. Bc Exercise
A
t2l (4)
(6) (8) lUl l? 4. Invalid. Quantifier must be removed first.
5. Invalid.The (x) quantifierdid not quantify the whole line.
6. Invalid.Antecedentof line 5 does not match line 3.
7. lnvalid. Can't universallygeneralize
from a constant.
5. Invalid.can't use UG to bind a variablethat is free in a line that is justified by El.
In this case y is free in line 2.
4. Invalid.The (x) quantifierdoes not quantify the whole line.
5. Invalid.Can't replacea variablewith a constantwhen using El.
9. Invalid.Can't universallygeneralize
from a constant. Exercisef
l2l 13 AntueyS 3. Fx = Gx
4. Gx -,:Hx (4) 5. Fx) Hx
6. -Hx)-Fx
7. (zll- Hz ) - Fzl
4. - Gx
5. Ax) Fx
6. Fx: Gx 7. Ax) Gx
8. -Ax
(61 9. (3x) - Ax
4. - Ox
5. Rx= Ox
6. - Rx= Px
7. - Rx
8. Px
9. l3zlPz (8) 4, Rx
5.-Gxf-Bx
6. Mx
7. Rx) Gx
8. Gx
9. (3$Gx
10. lfxlMx
11. (SxlGx.ExlMx 1Ul
2Ul
3.4HS
5 Contra
6UG
3Et
2Ua
1Ul
s,6 HS
4,7MT
8EG
2El
1Ul
3Ut
4.5MT
6.7MP
8EG
lEl
2Ul
3Ul
5 Contra
4,7MP
8EG
6EG
9,10Conj {10} l12l 3. Mx.Lx
4. Kx)-Lx
5, lx
6. --l-x
7. - Kx
L Mx
9. Mx' - Kx
10. (lxllMx. - Kxl
4. Rx. Kx
5. Lx)-Kx
6. (-tx.Rxl)Bx
7. Kx
8. --Kx
9. - Lx
10. Fx
11.- Lx.Rx
12. Bx
13. (3x)Bx 2El
1Ul
3 Simp
5DN
4,6MT
3 Simp
7,8Conj
9 EG
2El
1Ul
3Ul
4 Simp
7DN
5,8MT
4 Simp
9,10Coni
6,11
MP
12EG Exercise
n (4) r/ 4nluei.s 2. Hx) - Kx
3.-Hxv-Kx
4. - lHx. Kxl
5. (y)- lHy. Kvl
6. - (]yl(Hv. Kyl
2. (xl - Fx
3. -Fa 1Ul (6) 2lmpl
3 DeM
4UG
5(}N
10N
2Ul 4. - Fav Ga 3 Add 5. Fa:. Ga 2EG
3()N
1 , 4M T
50N
6Ul
7 DeM
8lmpl 4lmpl llxl - (Hxv Kxl 10N
3El
4 DeM
o- - K x
5 Simp
(- Kxv Lxl) Mx
2Ul
8. - K x v L x
6 Add
9 . Mx
7,8MP
I 0 . lfzlMz
9EG
- (lx)Sx
J.
AP
4 . - (lxl,9x
1 , 3M T
5 . (x) - Rx
40N
6. - R x
5Ul
7 . Tx) Rx
2Ul
8. - T x
6,7 MT
q
lxl - Tx
8UG
1n
90N
1 1 . -(3x)Sx l- (fx)Ix 3-10 CP
' t 2 . (lx)Ix
I (3x)Sx
11 Contra
lx -Hx
2El
5 . - Fxv Gx
3Ul
Gx) Hx
1Ul
7. rx)gx
5lmpl
8. Fx) Hx
6,7 HS
q
-Hx
4 Simp
10.-Fx
8,9 MT
1',t.
lx
4 Simp
tt. lx -Fx
10,11 onj
C
1 3 . (lxXix. - Fx)
1 2E G
J.
10N
lSxl - (Fx) Gxl
4 . - (Fx ) Gxl
3El
- (- Fxv 6x)
4lmpl
o. - - F x . - G x
5 DeM
1. -Gx
6 Simp
8 . (xI - (- Gx Hxl
2(}N
9. - l- Gx. Hxl
8Ul
10. --Gxv-Hx
9 DeM
1 t . Gxv - Hx
10DN
12. - H x
7,11 S
D
t J . llxl - Hx
1 2E G
5. 9UG Fx
(3xlFx 4 . - (Hx v Kxl
5. - H x - K x (1 0 ) 3. (]vl - Cy
a. - (ylCy
5. - (lxXAx Bx)
6. (x) - (Ax. Bxl
7. -(Ax.Bxl
8. -Axv-Bx
9. Ax) - Bx
10. (xXAx) - Bxl 3EG
1 , 4M P
5El
6 Simp
7 Add
8EG
2,9 MP
lxlLx
Lx
10ul
2. Fx) Lx
3-11CP
3 . (xl(Fx) Lxl
1 2U G
J. Px) (Axv Bx
1 Ul
4. l B x v C x l = O x
2Ul
Px. - Ax
AP l.'. Qx
o. Px
5 Simp
7. Axv Bx
3,6 MP
R -Ax
5 Simp
q
Bx
7,8 DS
0. Bxv Cx
9 Add
1 . Ax
4 , 1 0M P
12. ( P x - A A ) A x
5 - 11 C P
1 3 . (xll(Px. - Axl ) Oxl 12 UG
2. - (]xlCx
lixllGx. Hxl
Gy. Hy
Hy
Hyv Ky
(3x)(Hxv Kx) (18) 3 . ( x )- C x 2ON 4. - C x 3Ul (Axv Bxl ) (Cx. Dxl 1 Ul
o- - l A x v B x l v (Cx Dxl
Slmpl
( - A x . - B x lv
(Cx. Dxl
6 DeM
IF Ax. - Bxl v Cxl
IF Ax.- 8x) v Dxl 7 Dist
9 . l- Ax. - Bxl v Cx 8 Simp
1 0 . - Ax. - Bx
4,9 DS
1 1 .- A x
1 0S i m p
12. - A x . - C x
4 , 1 1C o n j
t J . - lAxv Cxl
12 DeM
1 4 . 8l - (Axv Cxl
13 UG
1 5 . - l3xl(Axv Cxl
14 ON
t b . - taxtLx )
- (lxllAx v Cxl
2-15 CP
1 7 . Exl(Ax v Cxl >
(3xlCx 16 Contra
Solution details:
Answered
QUALITY
Approved
ANSWER RATING
This question was answered on: Sep 13, 2020
PRICE: $15
Solution~00021147630337.docx (25.37 KB)
This attachment is locked

Pay using PayPal (No PayPal account Required) or your credit card . All your purchases are securely protected by .
About this Question
STATUSAnswered
QUALITYApproved
DATE ANSWEREDSep 13, 2020
EXPERTTutor
ANSWER RATING
GET INSTANT HELP/h4>
We have top-notch tutors who can do your essay/homework for you at a reasonable cost and then you can simply use that essay as a template to build your own arguments.
You can also use these solutions:
- As a reference for in-depth understanding of the subject.
- As a source of ideas / reasoning for your own research (if properly referenced)
- For editing and paraphrasing (check your institution's definition of plagiarism and recommended paraphrase).
NEW ASSIGNMENT HELP?
Order New Solution. Quick Turnaround
Click on the button below in order to Order for a New, Original and High-Quality Essay Solutions. New orders are original solutions and precise to your writing instruction requirements. Place a New Order using the button below.
WE GUARANTEE, THAT YOUR PAPER WILL BE WRITTEN FROM SCRATCH AND WITHIN A DEADLINE.
